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Abstract. Classification and prediction of software defects is central to software
quality assurance and control of the whole software engineering process. Bugs
need  to  be  classified  correctly  when  implementing  the  software  quality
assurance process. Qualitative models are based on this data and can be used to
improve process quality, customer satisfaction and to explore defect associations
and propagation. Quantitative models are indispensable for resource allocation
since not all units can be inspected and reviewed. Static, process, churn and
entropy of source code metrics need to be compared and can be combined with
pre-release defects to achieve better results.

1 Introduction

There  are  two  different  types  of  models  for  software  quality  prediction  and
assurance: Qualitative and quantitative models. While qualitative models require an
appropriate  bug data acquisition which needs to  be implemented into the existing
software development process,  quantitative approaches can be applied more easily.
They  may  operate  with  existing  data  extracted  from  the  versioning  system  or
changelog. Qualitative models on the other hand provide an early indicator of process
problems which can not be achieved with traditional methods.  We will discuss both
kinds of models including their strengths and weaknesses.

Counting the mere number of bugs would be an insufficient predictor for software
quality assessment as it neither accounts for the severity nor the field of impact. Even
with bugs classified like this as well as an optimized software quality and process
management it remains a problem to assess and control software quality in advance.
We will focus on how defect data can be used for process improvements in the section
about  Classification  and  Prediction.  Classifying  defects  correctly  and  usefully  is
indispensable  when  it  comes  to  assess  process  quality,  customer  satisfaction  and
defect propagation. 
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The  strength  of  numeric  models  on  the  other  hand  lies  in  a  good  resource
allocation for testing and formal verification. It is desirable to have a high prediction
accuracy. As many defective units as possible should be inspected (true positive rate,
recall) while the additional effort to inspect clean code units should remain low (false
positives). Employing cost sensitive prediction allows to trade off a certain degree of
the false positives and accuracy against a higher recall which is particularly important
in order not to miss important bugs (see also: ROC curves) [8]. Numeric prediction is
a core issue of quality assurance.

To measure the actual impact of defects on software quality and thus the defect
density  in  the  final  product  most  of  the  studies  focus  on  post-release  defects
discovered  about  6  month  after  the  final  release  to  the  customer  [5,6,7,8].  Not
everything experienced as a failure by the customer is a defect due to an actual error
in the source code.

The maximum net gain of quantitative models can be visualized with a cumulative
lift  chart  which shows a steeply increasing curve at the beginning which becomes
more flat when it later on approximates to the 100% mark [7]. It shows that 20% of
the files contain 100% of all bugs while 20% of all LOC (lines of code) contain 70%
of bugs. The bugfix approach which has been used as comparative measure for current
bug prediction methods by Ambros et al. shows that by inspecting 20% of predicted
files, 75% of bugs can be found while 20% of predicted LOCs account for 40% of all
bugs. There are even better performing measures than extrapolating the past number
of bug fixes.

In the following we will show how to collect and evaluate the necessary data to
improve  the  software  development  process.  A  plethora  of  different  measures  and
approaches has evolved by the time. We will present and discuss the most important
metrics and how they can be deployed. This article is meant as a short introductory
overview  over  the  most  important  topics  of  software  defect  prediction.  It  should
introduce  the  reader  into  the  interesting  and  exciting  field  of  software  quality
engineering.

2 Bug Classification and Data Retrieval

Multiple classification schemes have been developed [1]. IEEE standard 1044-1993
includes the process activity (trigger) and the phase during which a defect has been
found as well as its suspected cause and the defect type or taxonomy which describes
the nature of the fix. The Linux kernel Bugzilla f.i. keeps hold of the component, tree
and version along with the  severity, domain dependent attributes  like  hardware and
operating  system  in  which  a  bug  has  been  found  as  well  as  whether  it  was  a
regression. Other attributes like status (resolved/fixed, open, etc.), keywords, tags and
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inter-bug dependencies serve the purpose of finding, ranking and working on bugs
more easily. Some of these informations have been frequently reverse engineered from
the report and last modification date of the bug tracker together with the versioning
system being used1. 

The source of a defect may basically be any document during any phase such as
requirements analysis, design or code. For means of extracting process and product
related metrics it is important to localize the fix of a given report in the versioning
repository i.e. finding the source of a defect.  

A study by Schröter et al. which shows the impact of library usage on bug densities
succeeded to reverse  engineer  70% of  all  report-fix links committed  by the  same
developer as the report was resolved within a time frame of 12 hours [6]. Commits
resolving a certain bug typically contain a message with a string like 'fix', 'fixed' or
'resolved' and 'bug number/#number' or perhaps just the string '#number' but nothing
like  'prefix'  or  'postfix'  [7].  A  company  which  implements  a  quality  engineering
process should establish bug reports and fixes in the versioning repository to be linked
explicitly and encourage developers to deploy the necessary means in practice;  f.i.
mentioning the URL of the report in the commit or attaching a patch containing a
commit number to the report may be sufficient to do so.

In order to find out which bugs could be related Song et. al have employed a sliding
window protocol on bugs being filed on the same project  or component not being
more than a day apart  [4]. Methods like these may be necessary if data is missing or
not  designated  by  the  classification  scheme.  Sometimes  associations  and
classifications may even need to be established by hand with hindsight like it was the
case for the basic study about orthogonal defect classification for which the authors
started to manually classify after regression analysis [2].

Another important source of data for bug prediction is the changelog though we
will not examine this in detail here. While some experiments utilize the data from the
versioning  system,  many studies  combine it  with  the  bug database,  however,  still
focusing on bugs that have been resolved [7,5,6]. 

3 Classification  based  Bug  Prediction  and  the  Software
Development Process

Large companies like IBM, HP and Motorola have their own classification scheme.
Considering the current state of the art such a classification scheme should at least
include  a  set  of  orthogonal  classifiers  which  means  that  bugs  are  classified  into
categories  that are independent and thus do not overlap. The primary approach by

1 e.g. cvs, git, svn
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IBM initially employed for defect  data of an operating system development project
was later on called Orthogonal Defect Classification or ODC and adopted by HP and
Motorola as well due to its analytical strength. 

There are three main categories of ODC: Defect type and mode, defect trigger and
defect  impact.  The most important category is the type classification by the actual
implementation properties  of  the  applied fix.  It  has  been  shown that  each  type  is
prevalently  discovered  during  a  certain  phase  of  development:  Functional  defects
prevalently  during  design,  assignment  defects  frequently  during  coding,  checking
defects  often  show  up  at  function  tests  and  problems  such  as  timing  or
synchronization issues during system test. If the wrong type of defect shows up in the
wrong phase of development this may indicate a process problem. A large number of
functional  defects  in  a  testing  phase  indicates  that  the  development  should  still
undergo significant design or coding effort.  It tells that these phases deserve more
attention.  Classifying  defects  by  type  provides  a  very  early  indication  of  process
problems which can not be achieved with traditional methods where problems do not
show up before system, integration testing or delivery.

The defect mode can be one of missing, unclear and wrong [1]. A very early study
has  shown that  defect  types  are  related  to  symptom groups each  group  having  a
characteristic  inflection  of  the  reliability  growth  curve  which  shows  whether  the
discovery  of a bug may depend on the discovery  of previously found bugs [2].  It
showed  that  symptom  group  one  had  a  specifically  high  amount  of  missing
initialization errors and thus the highest inflection. Most bugs where either easy to
find  and  dependent  or  independent  and  hard  to  detect.  The  study  stated  that
improvements in design and specification would have made a significant difference.

The defect trigger on the other hand can be used to improve the effectiveness of
system testing. If a bug is found during the design compatibility test  of an inspection
then Design Compatibility would be the trigger. Triggers are grouped by the process
activity  that  triggered  the  defect  detection  like  review,  inspection,  unit,  function,
system and field test. If there is a deviation in the bug distribution between system and
field/beta testing, that points to specific problems or weaknesses in system testing.

Finally the defect impact is suitable for assessing customer satisfaction.The impact
dimension has an impact type being one of serviceability, availability, installability or
expandability,  just  to  name  a  few.  The  GSMBSS  (GSM  Base  Station  Systems)
software  development  organization  of  Motorola  has  counted  the  number  of  post
release defects in 1996 an found that most reported defects were due to capability,
followed by serviceability and reliability [3].  That may be a process  indication on
whether to apply usability engineering. As usability was ranked after availability it did
not seem to be a problem for the customers of GSMBSS. Merely counting the defect
impact  type  may  however  be  not  sufficient  as  the  severity  ('blocker',  'critical':
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crash/hang/data loss, 'major', .., 'enhancement') of each impact needs to be taken into
account as well.

Software  defect  association  mining  does  also use  classification  data  [4].  It  can
discover  interesting  relationships  such  as  a  bug  in  an  external  interface  being
accompanied  by  a  computational  defect  in  70% of  all  cases.  The  mined  data  set
showed  that  data  value  errors  which  are  neither  type  nor  omission  errors  but
commission errors take one hour or less to fix in 65% of all cases. The study mined
over 1000 relationships with an accuracy of about 95%, a false negative rate in the
area of 3% and a recall of about 87%.

4 Numeric Bug Prediction

In  the  following  sections  we  will  differ  between  source  code  metrics,  process
metrics and other approaches for predicting the number of bugs in a given module or
file.  While process  metrics  have been proven to perform better  than the so called
product related metrics at least when studied in isolation our introduction first focuses
on  the  traditional  approach  of  static  code  metrics.  Some  of  the  best  performing
metrics in a benchmark conducted by Ambros et al. are still calculated on base of
source code metrics like churn of source code metrics and entropy of source code
metrics.

4.1 Static Code Metrics

The most simple and long-serving software metric is the mere number of lines of
code (LOC). Though increasingly diverse, elaborate and innovative metrics have been
established  by  the  time  this  is  still  a  relevant  metric  which  has  been  proven  to
contribute  relevant  information  under  any  kind  of  circumstances.  Though  this
approach is oversimplifying and clearly suboptimal as it just yields a straight diagonal
line on the cumulative lift chart which we have discussed in the introduction it can be
used to measure and compare the performance of other metrics. Early works state an
approximation of 23 defects per 1000 LOC according to Akiyama's first equation and
an approximate defect density of 8 to 12 after Fagan inspections [9].

The next generation of software defect predictors was function based counting the
number of parameters, blocks, global variables read or written, counting how often
the address of a variable has been taken, counting the call graph (FanIn, FanOut) or
how many arcs a function in the control flow graph has. A procedural metric, to which
predictive  power  is  widely  attributed,  is  McCabe`s  cyclomatic  complexity  which
measures  the  number  of  independent  paths  through  the  program.  The  higher  the
cyclomatic complexity the more test cases and possible execution paths to think of.
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The most recent set of static code metrics is object oriented (OO). Examples for
OO  metrics  are  the  weighted  method  count  per  class,  the  inheritance  depth,  the
number of subclasses, the coupling between classes in terms of attributes, parameters
and return types or the visibility of class elements. The benchmark which we will
discuss in 'the performance of metrics'  uses the Chidamber & Kemerer suite along
with some supplementary OO metrics [7].

A fundamental study conducted by Microsoft concludes that there is no single set
of static code metrics to be universally applicable. The predictive power of metrics for
each  investigated  software  project  is  largely  different  with  some projects  yielding
good results for OO metrics, others for functional metrics or both OO and functional
metrics.  The set  of deployable static code metrics needs to be fine tuned for each
project  based on its history.  Notably only one project  was correlated with none of
these  metrics  except  mere  LOC.  It  was  performing  regular  refactorings  based  on
software metrics [5]. It has been proven that refactoring improves software quality [8].

4.2 Process, Change and Other Metrics

While  the  software  development  process  is  governed  by  many  qualitative  and
people related  issues,  what  can be measured  best  are  mere  change metrics.  Many
properties of the software development process become condensed and measurable by
change metrics like the number of refactorings applied, the number of contributing
authors, previous bugfixes, the number of revisions commited to the repository of the
versioning system, the code churn measuring added and deleted lines of code as well
as the maximum and average changeset of files commited together.

The code churn source code metric may not only be based on the mere LOCs but
on any other static code metric (churn of source code metrics class). Another derived
set of metrics is the entropy of source code metrics based on Shannon Entropy. While
code churn metrics account for the changes of metric values over time these class
counts the distribution over entities on a file or module level.

Some alternative approaches  have also investigated  the effect  of  usage relations
between components. Network analysis on dependency graphs can be used to predict
special 'escrow binaries'.  The so called escrow binaries are critical binaries like the
operating  system  kernel  which  need  to  undergo  a  special  protocol  on  changes
including  more  extensive  testing,  fault-injection,  code  reviews  [6].  A  study  by
Schröter  et  al.  has  additionally found that  the defect  proneness  of a component  is
significantly determined by the set of components that  it  uses.  This fact  is mostly
determined by the problem domain of the used component. 71% of the components
using the compiler package but only 14% using the ui package needed fixing [10].
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4.3 The Performance of Metrics

A key study conducted by Moser et al. shows that process metrics outperform static
code metrics [8]. It uses Naïve Baise, logistic regression and decision tree learners on
a file level. These results have been affirmed by an independent benchmark of metrics
by Ambros et al. [7] which is mainly based on regression models. It compares metrics
of five different projects2 in three different scenarios: Binary classification, a ranking
by the number of bugs per class or file and the bug-count per LOC. The set of process
metrics  employed by Moser  as  well  as  certain  churn  and  entropy of  source  code
metrics were among the top performers in all three scenarios. All three metrics were
significantly better than the others for binary classification and ranking per class. They
were still significantly better than code metrics in the ranking per LOC.

However, the same benchmark did also find out that static code metrics where the
most  frequently  selected  for  decision  tree  learners,  Naïve  Baise  learners  and
generalized linear logistic models [7, table 8], if these machine learners were able to
select any attribute of choice. This indicates that static code metrics do still encode
relevant information.

The study conducted by Moser et al. has also tried a combined approach of change
and code metrics [8, table 5]. Their graphical result plot shows that code metrics may
have little to add. As the results of a combined approach were not significantly better
than the more simple change metric based approach the study suggests to drop the
combined approach in favor of a single process related approach that is more simple
to implement. It argues that both approaches were not orthogonal. Combined with the
number of pre-release defects the study by Moser has achieved an accuracy of 95%, a
true positive rate of 90% and a false positive rate of less than 2%.

Network  analysis  on dependency graphs  can  be used to predict  special  'escrow
binaries' with an accuracy of 60% versus 30% yielded by static code measures.  The
recall  for  defect  prediction is 10% higher than for static  code measures  [10].  The
mentioned  alternative  approaches  have  not  yet  been  included  in  any  common
benchmark. 

5 Conclusion, Future Work and Threats to Validity

We have investigated qualitative and quantitative approaches to bug prediction and
found  that  both  methods  complement  well  in  improving  the  software  quality
engineering and process engineering as a whole. 

The right  choice  of  bug  classification  mechanism is  an  important  issue  in  the
quality management of any company. Investigations have shown that classifiers used

2 Eclipse JDT Core, Eclipse PDE UI, Equinox framework, Mylyn, Apache Lucene



8      Elmar Stellnberger

for bug tracking should include an orthogonal set of classifiers while a more elaborate
set of classifiers may be desirable for root cause analysis.

The methodology for numeric bug prediction has evolved over the years and is now
a statistically well founded discipline ready to be deployed on a larger scale in practice
though more applied research in this field may be desirable. In a world with limited
resources adequate bug prediction is essential because only a limited number of code
units can be sufficiently tested and inspected.

All  investigations  have  shown  that  in  order  to  achieve  predictive  power  the
underlying set of base metrics must be independent or 'orthogonal' [2, 3, 5, 7]. The
prediction of future failures or post-release defects needs to be based on historical data
no matter which approach is used. Missing domain knowledge as based on the history
of  a  project  explains  why  some  elder  studies  may  have  arrived  at  partially
contradictory results [7].

There is still a lot of work to do. Existing approaches may need to be compared and
combined while collecting further evidence and achieving better reproducibility on
existing  results  will  be  necessary.  There  may be  more  powerful  yet  undiscovered
metrics  and  methodologies  besides  the  existing  wealth  of  approaches.  In  certain
project environments fine tuned static code measures may perform better than in our
studies [5,7,8]. Over-fitting of the problem domain by an excessive number of rules or
attributes selected by machine learners can be a problem under certain circumstance
leading  to  degraded  real  predictive  performance.  Even  the  used  base  data  being
partially reverse engineered may be flawed or insufficient for effective bug prediction.

In  the  future,  as  this  particular  field  evolves,  software  quality  and  defect
prediction may  be increasingly used to affirm or reject  design decisions.  A good
design will yield low defect-proneness and thus less consequential charges. Applying
regular refactorings has already proven to be beneficial. There have been studies on
the optimal module size.  The CMM (Capability Maturity  Model) tried to improve
software quality by bureaucratizing the development process. Whole approaches such
as the CMM have at last lost reputation because there was no evidence in their effect
on  the  residual  defect  density  [8,9].  Basing  design  decisions  on  evidence  could
revolutionize  software  engineering  though gaining  statistical  significance  is  rather
hard to achieve.

We believe that the area of bug prediction is an interesting and challenging field of
software engineering which deserves more attention. 
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