
Content Delivery Networks and Video Delivery

Elmar Stellnberger, Hermann Hellwagner

Department of Information Technology, University of Klagenfurt, Austria
Seminary in Multimedia Communication 623.700, 2019S

estellnb@elstel.org

Abstract. Today´s large web services like Youtube or Facebook deliver their content via so
called Content Distribution Networks (CDNs) which care about routing and caching the content
provided by one or more origin servers up to the end users located all over the world. Today more
than half of the video content is delivered by Content Distribution Networks. Netflix and Youtube
alone account for more than half of the peak downstream traffic within North America. Large CDNs
usually deploy a hierarchy of caches with a tree like structure comprising parent caches and several
edge caches near the clients which can provide fast access and low start-up latency for the user.
Usually requests are redirected through the DNS system the way that authoritative name servers of
the CDN redirect requests to the nearest edge server. Servers are usually concentrated in clusters in
a few strategic locations around the world. A two fold mapping first maps a request for a certain
object to a cluster centre and then to an individual machine in a cluster. Specific algorithms and data
structures like Bloom filters which can space and time efficiently record a set of objects with a low
false positive rate are employed to meet the algorithmic challenges within a CDN. Different cache
admission and eviction policies have been proven to be best suitable for different kinds of video
content. One of the best performing caching strategies thus divides a cache into partitions for
different kinds of content.

Keywords: routing, overlay, DNS-resolving, content aware caching, cache hierarchies,
algorithmic basis for CDNs: bloom filters, stable marriage, hashing, leader election.

1. Introduction

Initially the internet was built as a network which connected hosts for military and scientific
applications. Today’s internet is developing more and more towards a content centric network at
least for the majority of the users [7]. This means that we access, generate and share content without
caring where our content is hosted. Content centric access was an initial feature of the world wide
web though in today’s web a certain website is often no more hosted on a specific server in the web.
Instead the content is delivered via a so called Content Distribution Network (CDN) which employs
several edge caches near the user to speed up delivery and very often also a hierarchy of caches
including parent caches which increase the origin offload. The content provider does only need to
host one or more origin servers while the CDN takes care of transporting and caching the content up
to the last mile to the user. The origin offload can be measured as the factor by which the CDN can
reduce the traffic the origin server has to serve.

Besides the caching overlay, CDNs also provide routing and security overlays [2]. An overlay
can be seen as a virtual network built on top of a physical network which provides virtual resources
and new features to the user of the network. While Video on Demand is a content type which is very
well cacheable, live videos can not be cached at all and thus have very different requirements. Live
videos can thus profit the most from a routing overlay which speeds up delivery. Dynamically
generated content like content generated by an interactive application is also largely uncacheable
and thus requires a routing overlay. However other approaches like edge computing where the
application logic is replicated upon multiple servers may be more promising when such an
application needs to be scaled at a large scope.

mailto:estellnb@elstel.org

In a routing overlay, the traffic is routed over several servers of the CDN rather than directly
sending it over the internet. The advantage is that alternative paths for the content can be exploited
because the core internet services tend to route traffic with the same destination always over the
same path. This can lead to speed-ups of more than the 2.5-fold in normal operation for distances as
large as between the USA and Asia and to speedups of more the 1.5-fold within North America. The
larger the distance, the more possibilities are there for traffic optimization and thus the higher the
net gain is. In case of catastrophic events routing overlays can offer the highest benefits [9,10]. This
can be the failure of a large Internet Service Provider (ISP) like the nine hour lasting WorldCom
outage in 2002 or failing of ISPs to peer with each other like Cable and Wireless in 2001 for
financial reasons. At an undersea cable cut between Europe, the Middle East and South Asia (the
SEA-ME-WE 4 cable in 2010) regular internet suffered severe slowdowns while the routing overlay
could bypass bottlenecks with just a minimal performance degradation. This was due to the fact that
a routing algorithm that always selects the same path for the same destination can not distribute the
traffic upon multiple small links and does thus heavily rely on big backbones. Video delivery does
profit the most from duplicating data streams among so called reflectors and later on reuniting the
traffic on edge servers to compensate for packet losses [9,10].

Finally CDNs are known to effectively cope with Denial of Service Attacks simply due to
their sheer large size where enough resources are available to keep servers up and running.
Companies employing third-party Content Delivery Networks like Netflix and many smaller
companies can rely on a large pool of resources where resources can be relocated effectively within
a short time when a respective demand is given. This does not only apply to peak usages called
flash crowds which are commonplace in content delivery [4] but even more to DoS attacks. It can
be far harder if not impossible for a singleton service provider to provision sufficient overcapacity
for such peak usage events.

Besides their size CDNs can profit from a bundled and shared security expertise [2]. Security
personnel will keep the network free of known and new vulnerabilities and a security team can
maneuver, if required together with the content provider, against ongoing attacks. The origin may be
shielded against external traffic only allowing for the cache and overlay servers of the CDN. It is
also noteworthy that there are certain peculiarities that can be used to differ between flash crowds
and DoS attacks [7]. In a real flash crowd the number of clients dramatically increases while DoS
attacks are usually carried out by a few clients and a small percentage of content (typically less than
1%) is responsible for a very large fraction of requests (up to 90%, i.e. Zipf-like distribution). An
effective countermeasure could be to block access only for the clients carrying out the DoS attack.

In the following article we will first introduce load balancing and request redirection which
does mostly rely on DNS-resolution. Then we will present admission and eviction policies for
caches, analyse cache hierarchies where there are not only edge caches but also parent caches as
well as content aware caching which separates the cache into multiple partitions for different types
of contents. With Bloom filters, the Gale-shapley algorithm, hashing and leader election we also tell
about the algorithmic foundations of CDN technology. In the conclusion we give and outlook and
touch PA-CDNs (peer assisted CDNs). CDNs can be combined with P2P (Peer-to-Peer) solutions to
achieve significant traffic savings for popular content when many users are online.

2. DNS-resolution and Request Redirection

 If you visit a site in the internet, the respective application which is typically your browser
will issue a DNS-query to resolve the domain name of the visited site. Most internet providers
provide users with their own recursive local LDNS (Local Domain Name Server) which in turn asks
the authoritative name servers of the CDN providers to resolve the DNS query. The authoritative
name servers will respond with a server near the user which is up and running. The mapping is
thereby twofold. First the request will be assigned to a server cluster near the client taking into
account the distance between client and server and secondly local load balancing will assign to a

specific server within the cluster which guarantees a short response time and is thereby not already
overloaded. Global load balancing does not only take the physical distance into account but also
current connectivity measured by latency, packet loss and throughput as well as overall server load
in the cluster. The LDNS does typically cache results from the authoritative name servers. In order
to be able to reassign clients to another server the TTL field (Time to Live) for caching needs to be
set appropriately.

In the traditional approach the authoritative name server does only know the IP of the LDNS
but not the IP of the client when it needs to decide for the assignment of a respective edge server.
Things can get really bad if a global public resolver like the OpenDNS server 208.67.222.222 is
used. Then there is no hint at all where on the world the client resides. The problem can be
mitigated by selecting a local DNS server. For public resolvers like OpenDNS and Google Public
DNS the client-LDNS distance has a median of 1028 miles while the circumference of the earth
amounts to 25.000 miles. Private LDNSes usually have a far better distance of 200-300 miles
though over a quarter of the population in countries like Brazil, Australia and Argentina has to use
LDNSes with a distance of 4500 miles. When we assign IPs for domain names we do actually have
to consider the worst case since a service should be available all over the world and at best under
any circumstances of operation.

To mitigate the problem of opaque DNS queries an extension to the DNS protocol the EDNS0
client-subnet extension has been introduced [6]. By making use of these extensions the authoritative
name servers get to know the client IP address of the requester. The request is usually issued with a /
24 prefix of the 32bit IPv4 and often responded upon with a /20 prefix for caching. A system that
rolls out the EDNS0 extension for better DNS responses is called an end user mapping system.
Results have shown that for clients with an LDNS distance of about 2000 miles the RTT (round trip
time) which is the best indicator for download time can be reduced by one half and the time to first
byte including the server response time by 30%. The number of DNS queries a server has to answer
may rise from 870K to 1.17 million. Latency is an important issue since a 1-second delay in page
response time can result in 7% reduction in web service subscriptions. 25% of the users may
abandon a page if it takes longer than 4 seconds to load [3]. Even a few 100ms increase in page
download time can decrease revenues [6]. Search engines also honour fast response times.

Now let us come to the task of the authoritative name servers which need to map a client
request to a respective edge server. The mapping for global load balancing may be done based on a
variant of the Gale-shapley algorithm which finds a stable allocation [1]. Each request is identified
by a so called mapping unit made up of the IP-prefix of the requester and the traffic class of the
request which may be one of video, web content, applications or software download. The algorithm
then associates each mapping unit with a server cluster which will need to serve the request while
both of these values define a 2-tuple or pair.

Each map unit has a preference list for clusters based on connectivity and response time while
each cluster gives preference to the nearest mapping unit. A stable mapping is a mapping where for
every pair no more than one participant is allowed to be able to suggest another pair where its
preferences are better fulfilled. The algorithm stems from finding optimal marriages between men
and women where in every round all men ask the woman they prefer most. In the first round men
begin to ask the women at the top of their preference list. Women accept the best offer according to
their preference list. Consequently in the first round not all men get a woman and the algorithm
continues to seek for men that are not yet engaged in a fiancé. Women may change to a more
preferred partner at any time. The algorithm is of complexity O(N²) and men optimal because it
always favours the preferences of the men when multiple stable allocations exist. The actual
implementation is a bit different as each server cluster can accept a plethora of mapping units.
Resource constraints can be modelled in so called resource trees which account for network and
processing power constraints in a leaf-to-root path where different constraints can be set for
different traffic classes like video, web and applications. On a new mapping the newly required
resources are subtracted from the remaining constraints.

In the next step the request is allotted to a number of servers within the cluster based on the
serial number. Different serial numbers are dispensed to different customers or content providers.
The rationale behind this step is that a content provider always provides multiple objects which are
usually fetched together. This way the user does not need to open different connections to different
HTTP servers if he just wants to retrieve the files of a singleton web page. This mapping may be
determined by a leader election algorithm as it is too important to rely on a singleton machine for its
calculation.

The final mapping step onto a specific server is not performed until the object, i.e. the
requested file is known which is generally not the case for the DNS-resolver which just knows the
domain name. Besides DNS-redirection there are also other request redirection methods like HTTP
redirect, URL rewriting and anycast. While a HTTP redirect incurs a certain runtime penalty and a
penalty when a search engine wants to index a page URL redirecting seems faster though it requires
the dynamic replacement of web content. However for a media manifest file as used for videos the
URL can easily be replaced upon shipping that file. The last mentioned replacement method is the
anycast: Some servers have the same IP address but the request is only forwarded to the nearest
server. However this method can compared to DNS-resolving, not take care of the requested object
either. It is feasible that an arbitrarily selected edge server asks a cache which is known to store the
object and then just forwards the object without caching the object itself. The way to connect two
times to a distant server via a HTTP redirect is usually longer than forwarding a request within the
same cluster.

The final mapping of a specific object to a server that holds it is done by a hashing function.
Hashing with this usage purpose is called ‘consistent hashing’. In case that a server may fail or for
popular objects which need to be cached by many servers an alternative value for the hash function
h0(x), h1(x) is required. This value is best obtained by an own function that performs overflow
caching. Storing overflowed items consecutively can yield suboptimal results if two popular objects
reside on nearby positions.

3. Cache Admission and Eviction Policies

The admission and the eviction policy is at the heart of caching. The admission policy
controls when a new data item is accepted and thereupon held in the cache, i.e. we say it is admitted
into the cache. Every time a new item is ingested into the cache an older item has to be replaced
because caches have a fixed or at least a maximum size. The eviction policy now controls which
item is removed from the cache before the new item can be inserted.

When we consider a hierarchy of caches, then popular admission strategies are Leave Copy
Everywhere (LCE), Leave Copy Down (LCD, only copied one level down the hierarchy) and Move
Copy Down (MCD, usually less useful) [3]. One of the most popular strategies is NHIT which
caches an item not before it has already been seen n-times. This strategy takes the fact into account
that there is almost always a long tail of infrequently accessed content by preventing the long tail to
pollute the cache. According to statistics from Akamai, a popular CDN provider, nearly three-
quarters of all objects were only accessed once and 90% of the objects were accessed fewer than
four times during two days [1]. Objects which are only accessed once are jocularly called ‘one hit
wonders’ [5].

Disk load is a key performance metric and often the bottleneck during peak usage time. The
response delay can increase significantly during peak load traffic [4]. Besides this the wear out is a
drawback when using solid state drives because the content of memory cells can only be changed a
limited number of times [3]. NHIT caching can reduce disk load for more than 90% without
affecting the hit ratio significantly [4].

Besides the n for the n-th hit, the reset period for NHIT caching is an important parameter.
The number of hits are only counted dating back up to the reset period. NHIT caching is usually

implemented by a data structure called Bloom filter which we will cover in a following section.
While 90% of objects had an inter-arrival time of less than 6-hours the Bloom filter reset period was
set in an experiment to 6 hours which is a relatively large value [4]. Consequently the optinmal N
for NHIT caching turned out to be N=4 for small objects and N=2 for larger objects. A shorter
period would incur a lower N.

The NHIT strategy may be combined with LCD by set intersection. Instead of computing
NHIT independently on every machine (LCE), the object is only considered one level down the
cache (LCD). Other strategies like probationary admission which admits a new item with a given
probability value seem less efficient at least as long as the probability value remains fixed. A
probability may be beneficial when there is not enough space to keep all objects for a given strategy
[3].

The most well known eviction policies are Least Recently Used (LRU) and Least Frequently
Used (LFU). LRU has been shown to outperform LFU by 5-10% for varying cache sizes. However
there are more sophisticated strategies like Segmented Least Recently Used (SLRU) and Adaptive
Replacement Cache (ARC). With SLRU the cache is partitioned into a probationary part where
objects are placed on the first admitted access and a protected part which assimilates objects that are
already in the probationary part and generate a hit. Similarly, before eviction an object falls back
from the protected part into the probationary part. One hit wonders can never progress into the
protected part and thus may only occupy a limited amount of resources. The difference between
SLRU and ARC is that with ARC the sizes of the segments become adjusted at runtime. Each
segment has a ghost list of the same length as the segment. For objects on the ghost list the objects
themselves are no more stored but only their hashes. Object hashes stay a while on the ghost list
(LRU) after eviction before they become forgotten. When an object shall be included in the
probationary part and it is already on the ghost list, the size of the probationary part is increased by
one because it was too small to still hold the forgotten object. The same applies for the protected
part.

As SLRU and ARC are eviction policies and NHIT is an admission policy, both strategies can
be combined. Besides the traditional implementations of SLRU and ARC, ghost lists can also be
used for faster admission. An element seen in the ghost list of the probationary part could directly
be assimilated in the protected part in order to save space in the probationary part and in order to
keep the probationary part smaller. When using ARC two different ghost list lengths for resizing
and assimilation may be used. Usually for ARC the size of the ghost list is as long as the list of
objects stored in the part of the cache corresponding to the ghost list. A further well used extension
to ARC is to use a time-to-live (TTL) value for the ghost-lists in order not to keep too old and
outdated values.

A caching hierarchy typically includes memory, SSD and hard drives with their own
parameterization or implementation of admission and eviction policies on each level.

4. Cache Hierarchies

Caches are usually organized in hierarchies. What can not be found in the edge caches where
the user issues his request, is forwarded to parent caches. If it can not been found in the parent
caches, the origin server is queried. As parent caches should be able to find things not present in
edge caches their size needs to be respectively larger than the size of the edge caches. At Youtube
cache sizes of 1GB, 10GB, 100GB, 1TB and 10TB have been considered for each level [3].

There are basically two different ways in how to construct a hierarchy of caches: Geo Split
Caching and Object-based Split Caching [5]. In geo split caching you have a traditional tree like
setup while for object-based split caching each server at one level is connected with every server at
the level above. That way an object that is not found in one cache can be requested also from a
more distant server. However this can deteriorate the response latency. Latency is the key

performance measure to consider. Answering by a cache near the user improves latency and thus
performance. An improvement in the hit rate does also lead to an equivalent improvement in the
latency if the object can be answered from the same cache. This is not the case for object-based split
caching when distant caches are consulted. An improvement in sever load and ultimately in origin
offload can be best achieved by object-based caching which observes the best hit rates while the
improvement for the overall latency is not as distinct.

A worthwhile alternative is a combination of geo and object-based split caching called hybrid
caching. Some objects possess geographically local popularity and best fit geo splitting while the
remaining objects can be split object based. Hybrid caching performs best with respect to latency
but incurs further complexity. Leaf caches have to keep track of the popularity of the content
requested to answer in case of a cache miss. Caches on the same level do not interact in both
models. This is different for the servers of a data center which keep to be synchronized and which
act as one single cache.

5. Content Aware Caching
If we observe different content categories, we can see that they can behave very differently

with regards to their caching properties. While music is being popular over weeks, news will be
mostly popular on the same day. Evidence has shown that for different content categories not only
the caching parameters need to be varied but also that different strategies can outperform others in
another field of use [3]. A study has found that for music videos ARC/NHIT performed best while
for videos about entertainment and people and blogs SLRU/LCE performed better [3]. The same
study from Youtube furthermore lists which admission and eviction policy performs best on which
hierarchy level and for which cache size [3]. SLRU and ARC have always performed better than
mere LRU/LFU. An independent evaluation that did not consider content aware caching found out
that LCD performed best so in case of doubt it may still be a good candidate to consider since it
does not copy too aggressively like LCE and does not remove anything from the cache like MCD
[13].

As different caching strategies perform best for different types of content it is obvious to
divide the cache into multiple segments for each content type and to apply different strategies with
different parameters for each category. For news a much faster Bloom filter reset period may be
appropriate than for music (NHIT-caching) while early video popularity alone is unsuitable for
predicting the future popularity.

The dimension of segments for individual categories may be adjusted due to request count
(smaller object) or to request size and frequency (better suitable when dealing with larger objects
like video). As the popularity changes over time and even diurnally it will be necessary to readjust
the segment sizes frequently. Resizing the segment sizes by a predicted value should usually
perform better than a historic resizing with hindsight [4].

ACDC (Adaptive Content-Aware Designed Caching) is a varied approach where a common
probationary part is used for all categories and respective protected parts for each segment [4].
When a new content item is admitted to the cache an older one needs to be evicted. However this is
not decided upon a prediction but upon the current state of matters. When it comes to shrink a
partition different strategies have been investigated: Smallest ghost list (SGL) proposes to shrink
the division with the smallest time-to-live equipped ghost list since the ghost list is rarely used.
ARC would at least not extend a segment with this property as often. Largest ghost list (LGL) does
the opposite and shrinks the division with the largest ghost list based on the rationale that with a
large ghost list items are evicted more often and thus do not deserve caching. Which approach will
perform better does of course depend on the value of the TTL property. With a sufficiently small
TTL value it may be more favourable to pick SGL since a small ghost list will not be polluted and
indeed signify little used content. With a larger TTL it may be more favourable to consider LGL.
Then there are also the relatively smallest ghost list (RSGL) and the relatively largest ghost list
(RLGL) strategies which compare the size of the ghost list to the segment size. A study at Youtube

has found the RLGL to be most appropriate for most strategies so it was used for shrinking the
cache in addition to maintaining a minimum division size because of the observed convergence of
smaller division sizes to very small values [3]. Initially the probationary division is assumed to
shrink. We would suggest to use SGL when comparing two categories that performed best with SGL
like sports and comedy. Besides this one could try to make divisions with different best opted
strategy comparable by comparing a respective value to a mean observed value by the division of
numbers. The mean value can be calculated by adopting the same strategy as for the value the mean
value is compared to for all divisions. The temporary adoption of a different strategy merely takes
place in order to calculate a mean value for comparison. Perhaps these measures could mitigate the
convergence of low sized categories to an even lower size better than just a minimum division size.

Evidence has shown that ACDC performs best for cache sizes of more than 10GB. Content
aware caching was found to best improve the hit rate while the effect of NHIT on disk writes was
the largest [4]. ACDC could also lower the user-perceived latency and the number of disk write
operations as it seems to be more stable with regards to its caching results [3]. The hit rate of
segmented content-aware caching predicted with ARIMA (Autoregressive Integrated Moving
Average) was observed to improve from 91.8% to 97.8% by 6% in comparison to content-oblivious
caching. This is equivalent to a 73% in reduction of cache misses (cache miss reduction = 1 – low-
misses/high-misses = 1 – (1-goodhitrate)/(1-badhitrate)). The hit rate improved with ACDC from
77% to 91% by 14% over non content-aware caching which amounts to a 61% reduction in cache
misses (see table 2 in [3]). The more the cache hit rate approaches to 100% the higher will be the
reduction in cache misses.

6. Bloom Filters and Leader Election
Bloom filters are a data structure which can store a set [1], [4]. There is no possibility to

enumerate the set (except by iterating over the total universe of all possible entries) but there is an
efficient method to test for set membership. Bloom filters are implemented by a hash function
which leads to a certain false positive rate if hash values collide. To keep the false positive rate low
an object is not only hashed once but multiple times. Only if all k entries for k subsequent tests in
the bitfield yield a one then the element is assumed to be part of the set.

Bloom filters are used for implementing NHIT caching, a process which is also called cache
filtering. Another application purpose is cache summarization where the Bloom filter stores which
elements are present in which cache. For this usage purpose, the variant of counting Bloom filter is
used since object insertion as well as deletion need to be supported. Bloom filters are a space
efficient method to store sets and can easily be exchanged between servers. It is desirable to know
the optimal k for a filter with m bits when inserting n elements. The probability that after inserting
one element B[h(o)]=0 is (1-1/m) and after inserting k times n elements it is (1-1/m)kn. The
probability p of a false positive is therefore:

p = (1−(1−1 /m)
kn
)
k

≈ (1−e−kn /m
)
k , k≈(ln 2)(m/n) , p ≈ 2−k

≈ 2
−

m ln 2
n

With these formula the optimal number of insertions k for a given m and n may be
determined. Sometimes a smaller k is chosen in order to improve runtime efficiency. It is also
interesting to calculate the desired m by supplying the maximum tolerable false positive rate p and a
given number of elements n that we want to insert from the last equation.

Bloom filters used for cache filtering use a reset period after which the filter is reset to zero in
order not to reflect too outdated access values. In order not to lose all historic values two or more
historic Bloom filters can be used. New values will always be inserted into the most current filter
and the oldest filter will be forgotten when a new freshly zeroed filter is inserted into the head of the
FIFO queue. For membership testing all Bloom filters in the FIFO need to be considered.

Leader election strategies are often used in the context of CDNs when it comes to load
balancing or as mentioned before for the assignment of servers to serial numbers of content
providers when determining on which servers in a cluster a given web page should be cached [1].
The replication of the decision making process may be necessary to avoid a single point of failure.

Before leader election takes place the participating servers, which are part of a predetermined
candidate set, periodically broadcast their own health values as well as health values of servers
within their reach. Health values may depend on the connectivity of a server, its load and
responsiveness as well as whether the server already has a sufficiently recent data set to compute
the required results. If the current leader has not been heard of for a given timeout or also simply
after a given period of time a new leader is elected.

Leader elections differ in the facet whether in case of a network partition a leader is elected
for each partition (at-least-one semantic) or if a leader is elected at all in case of a partitioned
network (at-most-one semantics). A network partition occurs if there is no sufficiently stable
interconnection between two parts of the network. While most times an at-least-one semantic is
required the at-most-one semantic may be useful in case of when two different versions of a result
would lead to adverse effects and when using a slightly older result is still tolerable. This may be
the case for a network connectivity map where the same data should not be applied to different
versions of the map.

7. Outlook and Conclusion

Today a few top content publishers account for a majority of the Internet traffic. CDNs are
used for large web services and are predicted to deliver 71% of the global internet traffic by 2021.
Different web applications like video streaming, web pages and social networks depend on CDNs
[3]. As basic research was already carried out decades before the first CDNs were built, CDNs are
nowadays a very well established technology. While some large companies like Google, Facebook
and Microsoft implement their own in-house CDNs there is a number of third-party content delivery
networks like Limelight, Akamai, Level 3, MaxCDN or ChinaCache that can be made use of for
mid-size or smaller web services [8]. CDNs accomplish high scalability, faster content delivery,
better availability, performance and origin offload. A precise caching infrastructure lowers the
amount of redundant traffic over the web. CDNs improve caching, routing and security. Recent
years have witnessed tremendous growth in video traffic on the Internet as a result of higher
broadband data rates, proliferation in smart handheld devices and affordable unlimited data
contracts offered by Internet Service Providers (ISPs). However even CDNs can be stressed by the
peak usage demands of video delivery.

Nonetheless there are still challenging areas for current research efforts which can
complement the traditionally established CDN technology. Software Defined Networks (SDN) can
be used to exchange current connectivity values on the internet which is important for routing
overlays as well as global load balancing. The ALTO protocol can be used to query such data from
ISPs while extensions have been proposed to also communicate the needs of a CDN back to the
network [11,12]. When it comes to implement web applications with a rich application logic, the
caching service of traditional CDNs may not be sufficient so that technologies like edge computing
will need to be considered. Some CDNs use cloud technology which employs a distributed model of
virtualization.

Finally by combining traditional CDNs with peer-to-peer (P2P) networks the benefits of both
worlds can be combined. The good thing about P2P networks is that they have the self-scaling
property. The more peers there are in the swarm the more resources become available. P2P
networks can complement traditional CDNs for popular content when a sufficient number of peers
are online while detriments like missing Quality of Service can be levelled by the traditional CDN
infrastructure. Leading companies like Akamai, ChinaCache or Xunlei nowadays deploy PA-CDNs
(peer assisted CDNs) [8]. Challenges like the heterogeneity of resources, start-up delay in video
delivery, clients hidden behind firewalls and incentives for user participation need to be addressed
by PA-CDNs. P2P networks constitute just a very different approach to serve content and may thus
also be seen as content-centric networks.

References

[1] B. M. Maggs, R. K. Sitaraman, “Algorithmic Nuggets in Content Delivery”, ACM
SIGCOMM Computer Communication Review, vol. 45, no. 3, pp. 52-66, July 2015.

[2] R. K. Sitaraman, M. Kasbekar, W. Lichtenstein, M. Jain, “Overlay Networks: An Akamai
Perspective”, In Pathan, Sitaraman and Robinson (eds.), Advanced Content Delivery, Streaming and
Cloud Services, John Wiley & Sons, 2014.

[3] C. Koch, J. Pannmüller, A. Rizk, D. Hausheer, R. Steinmetz, “Category-aware Hierarchical
Caching for Video-on-Demand Content on YouTube”, In Proceedings of the 9th ACM Multimedia
Systems Conference (MMSys ‘18), pp. 89-100, June 2018.

[4] M. Z. Shafiq, A. R. Khakpour, A. X. Liu, “Characterising Caching Workload of a Large
Commercial Content Delivery Network”, In Proceedings of IEEE INFOCOM 2016, April 2016.

[5] A. Rizk, M. Zink, R. K. Sitaraman, “Model-based Design and Analysis of Cache
Hierarchies”, In Proceedings of the 2017 IFIP Networking Conference, June 2017.

[6] F. Chen, R. K. Sitaraman, M. Torres, “End-User Mapping: Next Generation Request Routing
for Content Delivery”, In Proceedings of ACM SIGCOMM 2015, Aug. 2015.

[7] A. Passarella, “Review: A Survey on Content-Centric Technologies for the Current Internet:
CDN and P2P Solutions”, Computer Communications, vo. 35, issue 1, pp. 1-32, Jan. 2012.

[8] N. Anjum, D. Karamshuk, M. Shikh-Bahaei, N. Sastry, “Survey on Peer-Assisted Content
Delivery Networks”, Computer Networks 116 (2917) 79-95.

[9] K. Andreev, B. M. Maggs, A. Meyerson, J. Saks, R. K. Sitaraman: “Algorithms for
Constructing Overlay Networks for Live Streaming”, arXiv preprint arXiv: 1109.4114v1, Sep
2011 / March 2018.

[10] K. Andreev, B. M. Maggs, A. Meyerson, R. K. Sitaraman: “Designing overlay multicast
networks for streaming”, Proceedings of the Fifteenth Annual ACM Symposium on Parallel
Algorithms and Architectures, pages 149-158. ACM, 2003.

[11] S. Chen et al., “ALTO Implementations and use Cases: A Brief Survey”, Internet Draft
(Work in Progress), July 2018. https://www.ietf.org/id/draft-chen-alto-survey-00.txt.

[12] S. Ellouze, B. Mathieu, T. Lemlouma, “A Bidirectional Network Collaboration Interface for
CDNs and Cloud Services Traffic Optimization”, In Proceedings of the IEEE Conference on
Communications 2013, pp. 3592-3596, June 2013

[13] J. Dai, Z. Hu, B. Li, J. Liu, B. Li, “Collaborative Hierarchical Caching with Dynamic
Request Routing for Massive Content Distribution”, In IEEE INFOCOMM 2444-2452, 2012

https://www.ietf.org/id/draft-chen-alto-survey-00.txt

	Content Delivery Networks and Video Delivery
	1. Introduction
	2. DNS-resolution and Request Redirection
	3. Cache Admission and Eviction Policies
	4. Cache Hierarchies
	5. Content Aware Caching
	6. Bloom Filters and Leader Election
	7. Outlook and Conclusion
	References

